Amyotrophic Lateral Sclerosis (ALS)
Recognition of Dysarthria in Amyotrophic Lateral Sclerosis patients using Hypernetworks
Ilias, Loukas, Askounis, Dimitris
--Amyotrophic Lateral Sclerosis (ALS) constitutes a progressive neurodegenerative disease with varying symptoms, including decline in speech intelligibility. Existing studies, which recognize dysarthria in ALS patients by predicting the clinical standard ALSFRS-R, rely on feature extraction strategies and the design of customized convolutional neural networks followed by dense layers. However, recent studies have shown that neural networks adopting the logic of input-conditional computations enjoy a series of benefits, including faster training, better performance, and flexibility. T o resolve these issues, we present the first study incorporating hypernetworks for recognizing dysarthria. Specifically, we use audio files, convert them into log-Mel spectrogram, delta, and delta-delta, and pass the resulting image through a pretrained modified AlexNet model. Finally, we use a hypernetwork, which generates weights for a target network. Experiments are conducted on a newly collected publicly available dataset, namely VOC-ALS. Results showed that the proposed approach reaches Accuracy up to 82.66% outperforming strong baselines, including multimodal fusion methods, while findings from an ablation study demonstrated the effectiveness of the introduced methodology.
The Download: AI-restored voices, and bot relationships
Jules Rodriguez lost his voice in October of last year. His speech had been deteriorating since a diagnosis of amyotrophic lateral sclerosis (ALS) in 2020, but a tracheostomy to help him breathe dealt the final blow. Rodriguez and his wife, Maria Fernandez, who live in Miami, thought they would never hear his voice again. After feeding old recordings of Rodriguez's voice into a tool trained on voices from film, television, radio, and podcasts, the couple were able to generate a voice clone--a way for Jules to communicate in his "old voice." Rodriguez is one of over a thousand people with speech difficulties who have cloned their voices using free software from ElevenLabs.
Constructing optimal treatment length strategies to maximize quality-adjusted lifetimes
Sun, Hao, Ertefaie, Ashkan, Duttweiler, Luke, Johnson, Brent A.
Real-world clinical decision making is a complex process that involves balancing the risks and benefits of treatments. Quality-adjusted lifetime is a composite outcome that combines patient quantity and quality of life, making it an attractive outcome in clinical research. We propose methods for constructing optimal treatment length strategies to maximize this outcome. Existing methods for estimating optimal treatment strategies for survival outcomes cannot be applied to a quality-adjusted lifetime due to induced informative censoring. We propose a weighted estimating equation that adjusts for both confounding and informative censoring. We also propose a nonparametric estimator of the mean counterfactual quality-adjusted lifetime survival curve under a given treatment length strategy, where the weights are estimated using an undersmoothed sieve-based estimator. We show that the estimator is asymptotically linear and provide a data-dependent undersmoothing criterion. We apply our method to obtain the optimal time for percutaneous endoscopic gastrostomy insertion in patients with amyotrophic lateral sclerosis.
Evaluation Of P300 Speller Performance Using Large Language Models Along With Cross-Subject Training
Parthasarathy, Nithin, Soetedjo, James, Panchavati, Saarang, Parthasarathy, Nitya, Arnold, Corey, Pouratian, Nader, Speier, William
Amyotrophic lateral sclerosis (ALS), a progressive neuromuscular degenerative disease, severely restricts patient communication capacity within a few years of onset, resulting in a significant deterioration of quality of life. The P300 speller brain computer interface (BCI) offers an alternative communication medium by leveraging a subject's EEG response to characters traditionally highlighted on a character grid on a graphical user interface (GUI). A recurring theme in P300-based research is enhancing performance to enable faster subject interaction. This study builds on that theme by addressing key limitations, particularly in the training of multi-subject classifiers, and by integrating advanced language models to optimize stimuli presentation and word prediction, thereby improving communication efficiency. Furthermore, various advanced large language models such as Generative Pre-Trained Transformer (GPT2), BERT, and BART, alongside Dijkstra's algorithm, are utilized to optimize stimuli and provide word completion choices based on the spelling history. In addition, a multi-layered smoothing approach is applied to allow for out-of-vocabulary (OOV) words. By conducting extensive simulations based on randomly sampled EEG data from subjects, we show substantial speed improvements in typing passages that include rare and out-of-vocabulary (OOV) words, with the extent of improvement varying depending on the language model utilized. The gains through such character-level interface optimizations are approximately 10%, and GPT2 for multi-word prediction provides gains of around 40%. In particular, some large language models achieve performance levels within 10% of the theoretical performance limits established in this study. In addition, both within and across subjects, training techniques are explored, and speed improvements are shown to hold in both cases.
Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data
Mehta, Ritesh, Pramov, Aleksandar, Verma, Shashank
Amyotrophic Lateral Sclerosis (ALS) is characterized as a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options in the realm of medical interventions and therapies. The disease showcases a diverse range of onset patterns and progression trajectories, emphasizing the critical importance of early detection of functional decline to enable tailored care strategies and timely therapeutic interventions. The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app. This data is used to construct various machine learning models specifically designed to forecast the advancement of the ALS Functional Rating Scale-Revised (ALSFRS-R) score, leveraging the dataset provided by the organizers. In our analysis, multiple predictive models were evaluated to determine their efficacy in handling ALS sensor data. The temporal aspect of the sensor data was compressed and amalgamated using statistical methods, thereby augmenting the interpretability and applicability of the gathered information for predictive modeling objectives. The models that demonstrated optimal performance were a naive baseline and ElasticNet regression. The naive model achieved a Mean Absolute Error (MAE) of 0.20 and a Root Mean Square Error (RMSE) of 0.49, slightly outperforming the ElasticNet model, which recorded an MAE of 0.22 and an RMSE of 0.50. Our comparative analysis suggests that while the naive approach yielded marginally better predictive accuracy, the ElasticNet model provides a robust framework for understanding feature contributions.
High Performance P300 Spellers Using GPT2 Word Prediction With Cross-Subject Training
Parthasarathy, Nithin, Soetedjo, James, Panchavati, Saarang, Parthasarathy, Nitya, Arnold, Corey, Pouratian, Nader, Speier, William
Amyotrophic lateral sclerosis (ALS) severely impairs patients' ability to communicate, often leading to a decline in their quality of life within a few years of diagnosis. The P300 speller brain-computer interface (BCI) offers an alternative communication method by interpreting a subject's EEG response to characters presented on a grid interface. This paper addresses the common speed limitations encountered in training efficient P300-based multi-subject classifiers by introducing innovative "across-subject" classifiers. We leverage a combination of the second-generation Generative Pre-Trained Transformer (GPT2) and Dijkstra's algorithm to optimize stimuli and suggest word completion choices based on typing history. Additionally, we employ a multi-layered smoothing technique to accommodate out-of-vocabulary (OOV) words. Through extensive simulations involving random sampling of EEG data from subjects, we demonstrate significant speed enhancements in typing passages containing rare and OOV words. These optimizations result in approximately 10% improvement in character-level typing speed and up to 40% improvement in multi-word prediction. We demonstrate that augmenting standard row/column highlighting techniques with layered word prediction yields close-to-optimal performance. Furthermore, we explore both "within-subject" and "across-subject" training techniques, showing that speed improvements are consistent across both approaches.
A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis
Rao, Haocong, Zeng, Minlin, Zhao, Xuejiao, Miao, Chunyan
Recent years have witnessed an increasing global population affected by neurodegenerative diseases (NDs), which traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring. As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs. The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification, opening a new avenue to facilitate faster and more cost-effective diagnosis of NDs. In this paper, we provide a comprehensive survey on recent progress of machine learning and deep learning based AI techniques applied to diagnosis of five typical NDs through gait. We provide an overview of the process of AI-assisted NDs diagnosis, and present a systematic taxonomy of existing gait data and AI models. Through an extensive review and analysis of 164 studies, we identify and discuss the challenges, potential solutions, and future directions in this field. Finally, we envision the prospective utilization of 3D skeleton data for human gait representation and the development of more efficient AI models for NDs diagnosis. We provide a public resource repository to track and facilitate developments in this emerging field: https://github.com/Kali-Hac/AI4NDD-Survey.
Towards gaze-independent c-VEP BCI: A pilot study
Narayanan, S., Ahmadi, S., Desain, P., Thielen, J.
A limitation of brain-computer interface (BCI) spellers is that they require the user to be able to move the eyes to fixate on targets. This poses an issue for users who cannot voluntarily control their eye movements, for instance, people living with late-stage amyotrophic lateral sclerosis (ALS). This pilot study makes the first step towards a gaze-independent speller based on the code-modulated visual evoked potential (c-VEP). Participants were presented with two bi-laterally located stimuli, one of which was flashing, and were tasked to attend to one of these stimuli either by directly looking at the stimuli (overt condition) or by using spatial attention, eliminating the need for eye movement (covert condition). The attended stimuli were decoded from electroencephalography (EEG) and classification accuracies of 88% and 100% were obtained for the covert and overt conditions, respectively. These fundamental insights show the promising feasibility of utilizing the c-VEP protocol for gaze-independent BCIs that use covert spatial attention when both stimuli flash simultaneously.
Man, 67, with ALS becomes 10th person in the world to get brain chip that lets him work computers with his MIND - as Elon Musk's Neuralink just implanted first human last month
A man with Lou Gehrig's disease, also known as ALS, is the 10th person to receive a brain chip that lets him take control of his life using just his mind. Mark, 67, was diagnosed in 2020 and has slowly lost his physical abilities like accessing his phone or feeding himself, but that soon to change after receiving Synchron brain-computer interface (BCI) last August. ALS is a disease that causes nerve cells to deteriorate and results in muscle weakness and reduced dexterity until the person is eventually paralyzed - the entire process can take two to five years, and there is no cure. Mark is now able to send health notifications or pain reports to his provider using just by the BIC reading his brainwaves and translating them into actions carried out on a computer. He will soon be able to use his thoughts for more exciting tasks like turning on Netflix and texting family and friends.
Explainable Boosting Machines with Sparsity -- Maintaining Explainability in High-Dimensional Settings
Greenwell, Brandon M., Dahlmann, Annika, Dhoble, Saurabh
Compared to "black-box" models, like random forests and deep neural networks, explainable boosting machines (EBMs) are considered "glass-box" models that can be competitively accurate while also maintaining a higher degree of transparency and explainability. However, EBMs become readily less transparent and harder to interpret in high-dimensional settings with many predictor variables; they also become more difficult to use in production due to increases in scoring time. We propose a simple solution based on the least absolute shrinkage and selection operator (LASSO) that can help introduce sparsity by reweighting the individual model terms and removing the less relevant ones, thereby allowing these models to maintain their transparency and relatively fast scoring times in higher-dimensional settings. In short, post-processing a fitted EBM with many (i.e., possibly hundreds or thousands) of terms using the LASSO can help reduce the model's complexity and drastically improve scoring time. We illustrate the basic idea using two real-world examples with code.